This handbook includes guidelines and general information on the graduate student program and departmental policies. The handbook is meant to assist students by providing general information, and a basic framework and timeline for their studies according to present procedures. However, it is not intended as a formal commitment or binding agreement. Policies, requirements and suggested timeframes can vary in any given year from those outlined here, in response to altered circumstances, and may be changed without notice. Specific policies are set by the Director of Graduate Studies and the faculty and must be approved by the Chair and be consistent with the broader regulations of the Graduate School.
TABLE OF CONTENTS

I. Introduction .. 3

II. Integrated Biomedical Sciences Program .. 4

III. Pharmacology Graduate Program ... 5
 A. The Pharmacology Curriculum ... 5
 B. Formation and Responsibilities of the Advisory Committee 6
 C. Responsibilities of the Pharmacology Graduate Committee 7
 D. Overview of the Qualifying Examination ... 7
 E. The Written Qualifying Examination ... 7
 F. The Oral Qualifying Examination .. 9
 G. Doctoral Candidacy .. 9
 H. The Research Dissertation ... 9
 I. The Final Examination .. 11
 J. Additional Responsibilities ... 12

IV. M.D./Ph.D. Students ... 13
 A. Transition from M.D. Training to Ph.D. Training .. 13
 B. The Modified Graduate Curriculum ... 13

V. General Information ... 14
 A. Financial Topics .. 14
 B. Vacations and Holidays ... 14
 C. Personal and Lab Safety ... 15
 D. Disciplinary Issues .. 15
 E. Miscellaneous ... 16

Appendix A. Program Assessment and Student Evaluations ... 17
 Student Seminar Evaluation .. 21
 Annual Advisory Committee Evaluation ... 22
 Qualifying Exam/Dissertation Defense Evaluation ... 23

Appendix B. List of Pharmacology Graduate Faculty ... 25
I. Introduction

Welcome to New Graduate Students!

The Department of Pharmacology and Nutritional Sciences (home of the Pharmacology Graduate Program) hopes to help you make your graduate student years cheerful ones, but also challenging and successful. This information is intended to make your transition as smooth as possible. This handbook is intended to both provide practical information useful to pharmacology graduate students, and more importantly, to guide students through the important milestones of their graduate career.

Contact Information

Director of Graduate Studies: Dr. Robert Hadley, MS-371 UKMC. Phone: 257-6556. E-mail: rhadley@uky.edu.

Associate Director of Graduate Studies: Dr. Michael Kilgore, MN-354 UKMC. Phone: 323-1821. E-mail: M.Kilgore@uky.edu.

Pharmacology Graduate Office: Ms. Deborah Turner. MN-306 UKMC. Phone: 323-6085. E-mail: dturner@uky.edu.

Additional Pharmacology Graduate Committee Members:
Dr. Rolf Craven, 213 Combs. Phone: 323-3831. E-mail: Rolf.Craven@uky.edu
Dr. Nada Porter, MS-315. Phone: 257-4715. E-mail: nadap@uky.edu.

Departmental Administrator: Ms. Kelley Secrest, MS-305 UKMC. Phone: 323-5454. E-mail: kmsecr0@uky.edu.

Elected Graduate Student Representative (2012-2013):
Paulina Davis, Phone: 257-1412, ext. 267 & 268. E-mail: pau.davis@uky.edu.
II. Integrated Biomedical Sciences Program (First Year of Graduate School)

Typically, first year graduate students enroll in the IBS program. The IBS program integrates most biomedical graduate students in the University of Kentucky College of Medicine. The six participating departments and centers include Anatomy & Neurobiology; Microbiology, Immunology & Molecular Genetics; Molecular & Cellular Biochemistry; Pharmacology and Nutritional Sciences; Physiology; and Toxicology. The IBS program consists of both coursework and laboratory rotations. The 2013-2014 curriculum is described below. Detailed information about these courses can be obtained at graduate.med.uky.edu/ibs-curriculum-overview.

FALL Semester
- IBS 601 Biomolecules and Metabolism (3 hours)
- IBS 602 Molecular Biology & Genetics (3 hours)
- IBS 607 Seminar in Integrated Biomedical Sciences (0 hours)
- IBS 609 Research in Integrated Biomedical Sciences (1 hour)
- IBS 610 Critical Scientific Readings (2 hours)
- IBS 611 Practical Statistical Applications (1 hour)

SPRING Semester
- IBS 603 Cell Biology & Cell Signaling (3 hours)
- IBS 606 Physiological Communications (3 hours)
- IBS 607 Seminar in Integrated Biomedical Sciences (0 hours)
- IBS 608 Special Topics in Integrated Biomedical Sciences (2 hours)
- IBS 609 Research in Integrated Biomedical Sciences (1 hour)
- TOX 600 Ethics in Scientific Research (1 hour)

All IBS students take four laboratory rotations (two per semester) among any of the participating programs. The purpose of the rotations is for the student to both gain experience in a working scientific lab, and to find a faculty member who will serve as a research advisor. Selection of a research advisor is a mutual decision of the student and faculty member and is made at the end of the spring semester.

Additional information about the IBS program can be obtained at the IBS web page (graduate.med.uky.edu/integrated-biomedical-science), or by directly contacting the IBS program by web form (graduate.med.uky.edu/contact-ibs) or by phone at (859) 323-0004.
III. Pharmacology Graduate Program (2nd and Later Years of Graduate School)

A. The Pharmacology Curriculum

Most Pharmacology students follow the curriculum described below. Also, students may take statistics in a different semester than suggested below. Note that graduate students must register for a total of 9 hours per semester until the semester they take their qualifying exam.

All Pharmacology students are expected to earn either an "A" or "B" grade in the required PHA courses. In order to ensure that all pharmacology graduates have demonstrated competency in the discipline of pharmacology, students who receive a grade of "C" in PHA 621 or average less than a "B" in the four sections of PHA 622 may be asked to take an additional written exam as part of their qualifying examination. This exam will be administered by the Graduate Committee and DGS, and will provide the student with an additional opportunity to demonstrate that they possess the requisite knowledge of pharmacology to be allowed to proceed with the remainder of the qualifying exam. Alternatively, the Graduate Committee, after consulting with the student’s major professor, may ask the student to repeat PHA 621 or appropriate sections of PHA 622.

The Core Curriculum

Fall, 2nd year

PHA 621 PRINCIPLES OF DRUG ACTION (3 hours) Dr. Swanson/Piascik
This course covers the interaction of drugs with pharmacologic receptors, the coupling of these receptors to intracellular signaling cascades, and the techniques used to identify and differentiate receptor subtypes. The factors governing drug absorption, distribution, metabolism and excretion will also be discussed in detail.

STA 580 BIOSTATISTICS I (3 hours) Dr. Kryscio
Descriptive statistics, hypothesis testing, paired and unpaired tests, ANOVA, contingency tables, log rank test, and regression with biostatistics applications. STA 570 can be taken instead, if preferred.

PHA 750 RESEARCH IN PHARMACOLOGY (1-5 hours) Dr. Hadley
Students register for this course every semester until they have passed their qualifying examination, and should register for just enough credit hours to meet the required minimum number of hours per semester.

PHA 770 SEMINAR IN PHARMACOLOGY (1 hour) Dr. Hadley
Students register for this course every semester until they are ready to take their qualifying exam.

Spring, 2nd year

PHA 622 MOLECULAR DRUG TARGETS AND THERAPEUTICS (4 hours) Dr. Hadley
This advanced course provides state of the art information regarding drugs, drug action and targets for drug action. Four course sections are designed to function as independent one hour courses, emphasizing Cardiovascular Pharmacology (Section 001), Neuropharmacology (Section 002), Chemotherapeutic Agents (Section 003), as well as Autocoids, Endocrine Pharmacology, and Toxicology (Section 004).

PHA 750 RESEARCH IN PHARMACOLOGY (1-5 hours)
PHA 770 SEMINAR IN PHARMACOLOGY (1 hour)

Fall, 3rd year (and following terms)

PHA 767 DISSERTATION RESEARCH* (2 hours)
* PHA 767 should be taken fall and spring semesters, beginning with the term the qualifying exam is taken (usually Fall, 3rd year).

Electives Offered Through the Pharmacology Graduate Program

Students should consult their major professor and advisory committee about any electives they wish to take.

PHA 616 BIOLOGY AND THERAPY OF CANCER (3 hours) Dr. Rangnekar

Biology of cancer will be discussed at the molecular, cellular and organismic level. Emphasis will be placed on cellular signaling, apoptosis and cell cycle unique to cancer cells, which affects tumor cell behavior and its interactions with the host immune system. The biology of hematopoietic cells will also be included. Clinicians active in treatment and research of various types of cancer will be invited to participate in the lectures. (Same as MED/MI 616.)

PHA 617 PHYSIOLOGICAL GENOMICS (2 hours) Drs. McClintock & Chen

The study of function by global analysis of gene expression. Teaches the concepts, techniques, and functional significance of analyzing gene expression patterns. The technical emphasis is on the design and analysis of DNA microarray experiments. Examples of normal function or disease states in which gene expression profiling has had a significant impact are also taught. (Same as PGY 617.)

Registration for Courses

Registration is the student's responsibility, and must be done each semester after consultation with the major advisor. Registration is usually done using the myUK portal (https://myuk.uky.edu/irj/portal). Instructions are available at http://www.uky.edu/registrar/how-to. Initial registration typically occurs in March or April for the summer session and fall semester, and in November for the spring semester. Check the Registrar's web page for the exact dates. The department does not pay late fees for student registration. Any problems that appear while registering for classes using the myUK portal should be reported to Deborah Turner so that they can be corrected promptly for all students.

B. Formation and Responsibilities of the Advisory Committee

Graduate students select their major professor or research advisor at the end of their first year. The student's major professor will chair or co-chair the student's advisory committee. The committee is typically formed during the student's second year, a year before the qualifying examination.

The advisory committee must have four or more members. Three members must be Pharmacology graduate faculty, and one member must be from outside the program. The four "core" faculty on the committee must be members of the UK Graduate Faculty, and three must be full (not associate) members. If the student's major professor is an associate Graduate Faculty member, a full member must chair the advisory committee with the major professor as co-chair. A list of Pharmacology Graduate Faculty (as of July, 2013) is available in Appendix B. The Graduate School must approve the formation of the advisory committee.
The advisory committee oversees the progress of the student towards a doctoral degree. The committee must meet at least once a year to review student progress and give the student a written evaluation (see Appendix A). This includes guiding the student's coursework and dissertation research, as well as administrating and judging the qualifying and final examinations. Advisory committee decisions are made by majority vote.

C. Responsibilities of the Pharmacology Graduate Committee

The members of the Pharmacology Graduate Committee set program policies and oversee student assessment. The Graduate School requires each program to annually review whether a student is making good progress towards their degree. The Provost’s office also has specific requirements for student assessment. Assessment procedures and forms are included in Appendix A. Students will receive copies of all assessments.

D. Overview of the Qualifying Examination

The objective of the qualifying examination is to evaluate the student's general scientific knowledge, ability to think critically, and competence in their research field, in order to determine whether the student is qualified to be a candidate for a doctoral degree. Student evaluation is the main purpose of the qualifying exam, so the exam should not be regarded as a formal dissertation proposal. A student's dissertation research is allowed to differ from the experiments described in the qualifying exam.

The qualifying examination consists of two components: 1) a written research proposal, which follows the same format as a NIH pre-doctoral fellowship application, and 2) an oral examination in which the research proposal is evaluated by the advisory committee. The qualifying exam is usually completed in the fall semester of the student's third year. The actual exam can be taken at any point during the term, as long as classes are in session. However, the date must be submitted to, and approved by, the Graduate School within the first six weeks of the semester.

E. The Written Qualifying Examination

Students should first submit an abstract of one to two pages to the advisory committee. This abstract should summarize the research proposal that the student wishes to write up for the written examination. The proposal is usually related to ongoing research in the major professor's laboratory, but can be on a different topic. The abstract should briefly describe: 1) the scientific background of the proposal, 2) the main hypothesis, and 3) the specific aims and methods that would be used to test that hypothesis. The members of the advisory committee should either approve or recommend revision of the abstract within one week.

The student has four weeks to submit a research proposal after approval of the abstract. In order to be fair to all students, it is essential that all creative work on the proposal (literature review, development of the hypothesis and research design, and all writing) be done by the student alone. The proposal may be related to ongoing laboratory work, but no part of the proposal should be adapted from a grant or manuscript written by someone else.

The student is encouraged to discuss drafts of the proposal with the major professor. The major professor should not edit the proposal, but instead advise the student on language and formatting, or point out elements of the proposal that the student should reconsider (e.g. "Do the specific aims really test your hypothesis?" "Have you considered the limitations of, or alternative approaches to this experiment?").
The research proposal must be given to the advisory committee two weeks before the oral examination.

Required Format
The research proposal should follow the format of a NIH predoctoral fellowship application. The following abbreviated description is derived from pages 84-85 of (http://grants.nih.gov/grants/funding/424/SF424_RR_Guide_Fellowship_VerB.pdf).

Use a black Arial, Helvetica, Palatino Linotype, or Georgia font, 11 points or larger. A smaller font size may be used for figures, graph and tables. Use standard paper size (8 ½" x 11) with at least one-half inch margins (top, bottom, left, and right).

Divide the research proposal into the following sections and sub-sections.

1. Specific Aims (limited to one page)
 State concisely the goals of the proposed research and summarize the expected outcome, including the impact that the results will exert on the research field.
 List succinctly the specific objectives of the research proposed, e.g., to test a stated hypothesis, create a novel design, solve a specific problem, address a critical barrier to progress in the field, or develop new technology.

2. Research Strategy (limited to six pages, including all figures, charts, tables, and diagrams)

 (a) Significance
 • Explain the importance of the problem in the field that the proposed project addresses.
 • Explain how the project will improve scientific knowledge or technical capability in the field.
 • Describe how the concepts, methods, technologies, or preventative interventions that drive this field will be changed if the proposed aims are achieved.

 (b) Innovation – Skip this subsection for fellowship applications.

 (c) Approach
 • Describe the overall strategy, methodology, and analyses to be used to accomplish the specific aims of the project. Include how the data will be collected, analyzed, and interpreted.
 • Discuss potential problems, alternative strategies, and benchmarks for success anticipated to achieve the aims.

Preliminary Studies (not a separate subsection)
Discuss any pertinent preliminary studies, data and/or experience in either the Significance or Approach sub-sections.

3. Bibliography & References Cited (no page limitation, but be concise)
 Each reference must include the names of all authors, the article and journal title, book title, volume number, page numbers, and year of publication. When citing articles that fall under the Public Access Policy, provide the PubMed Central (PMC) reference number (e.g., PMCID234567).
Citations that are not covered by the Public Access Policy, but are publicly available in a free, online format may include URLs or PMCID numbers along with the full reference.

F. The Oral Qualifying Examination

Students are expected to present the outline of their research proposal at the beginning of their oral exam, which should include a discussion of the hypothesis and aims, background, preliminary data, methods, experimental design, and data analysis and interpretation. The advisory committee will ask questions aimed at evaluating the student's general scientific knowledge, familiarity with the relevant literature, and ability to critically think about the rationale and design of the research proposal.

If the student fails the qualifying examination, Graduate School regulations allow the student to take a second qualifying examination within 4-12 months, with the permission of the advisory committee.

G. Doctoral Candidacy

Students become doctoral candidates after passing the qualifying exam. Students have five years to earn their doctoral degree after the exam, unless the Graduate School is petitioned to allow additional time.

Doctoral candidates register for PHA 767 (Dissertation Research, 2 hours) each Fall and Spring semesters, even after all other class work is completed.

H. The Research Dissertation

1. Introduction

The research dissertation is a written description of the student's original research project, which the student will defend to the advisory committee at the final examination. The dissertation must be submitted to the advisory committee three weeks before the final examination. The advisory committee will expect the dissertation to be proofread and corrected before submission.

Students should review the Graduate School's requirements at http://www.gradschool.uky.edu/CurrentStudents/theses_prep.html before writing the dissertation.

2. Organization of the Dissertation (Graduate School Requirements)

The Graduate School requires dissertations to be organized into the following sections. The sections are described in greater detail at: http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#order.

1) Title Page for Dissertation
2) Abstract. The abstract must not exceed 350 words.
3) Approval Page.
4) Dedication Page (Optional).
5) Acknowledgments (Optional).
6) Table of Contents.
7) List of Tables (required only if tables are presented in the text).
8) List of Figures (required only if figures are presented in the text).
9) List of Files (required only if files are presented in the text).
10) Text. This section must be divided into chapters or sections. This is the section covered by the program requirements described in the next section.

11) Appendices. Materials that are independent of but relevant to the dissertation, for example additional data, symbols, abbreviations, definitions, etc.

12) References. References are works cited in the text, and may be listed either alphabetically or numerically (in order of citation).

13) Vita.

3. **Organization of the Dissertation (Program Requirements)**

 The program permits the main body of the dissertation (called "text" on the Graduate School's list copied above) to be written in one of two formats. The classical format must include the following separate chapters: Introduction, Hypothesis, Materials & Methods, Results, and Discussion.

 The alternative format allows the incorporation of manuscripts into the dissertation. The main body must include the following chapters: Introduction, Results (a separate chapter for each manuscript), and Discussion. The alternative format must include at least two manuscripts where the student is the first author. The manuscripts must already be published, in press, or submitted for publication. Note that journal reprints may not be directly included in the dissertation, and that the manuscripts must be retyped in a format that is acceptable to the Graduate School. Each manuscript included as a chapter in Results must include its own Introduction, Materials and Methods, Results and Discussion sub-sections. The overall Introduction and Discussion sections (the first and last chapters of the main body) should be written specifically for the dissertation (not adapted from another manuscript), and should integrate the material covered in all of the other chapters. References must be uniform in style throughout the dissertation, and conform to Graduate School requirements.

 The Graduate School expects students to be first authors on publications included as chapters in their dissertation. If the student is not the first author of a manuscript, a letter from the DGS approving of the inclusion of the manuscript must be included with the Electronic Thesis and Dissertation Form (described below in section I).

 You should also note the Graduate School states, in regard to previously published manuscripts, "It is the student's responsibility to contact journal editors regarding an individual journal's copyright regulations prior to publication with that journal. The journal may hold the copyright to the material, and a request for release should be made prior to reproducing that material in the dissertation."
4. Formatting of the Dissertation
The Graduate School has very specific requirements for the formatting of the dissertation. The most important general issues are listed below, along with links to the Graduate School's detailed instructions.

<table>
<thead>
<tr>
<th>Copyright Notices</th>
<th>http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#copyright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure & Tables</td>
<td>http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#figures</td>
</tr>
<tr>
<td>Fonts</td>
<td>http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#formatting</td>
</tr>
<tr>
<td>Line Spacing</td>
<td>http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#formatting</td>
</tr>
<tr>
<td>PDF Creation & Bookmarks</td>
<td>http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#document</td>
</tr>
<tr>
<td>Page Margins</td>
<td>http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#formatting</td>
</tr>
<tr>
<td>Page Numbering</td>
<td>http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#formatting</td>
</tr>
<tr>
<td>Preliminary Pages (Table of Contents)</td>
<td>http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#order</td>
</tr>
<tr>
<td>References</td>
<td>http://www.research.uky.edu/gs/CurrentStudents/electronic_dissertation_instructions.html#order</td>
</tr>
</tbody>
</table>

Note that formatting of electronic dissertations differs in some ways from that of printed dissertations (no longer accepted). This means that the printed dissertations of previous students may not be a reliable guide to formatting issues.

I. The Final Examination
The final examination is conducted by the advisory committee, including an outside examiner appointed by the Graduate School. The purpose of the examination is to evaluate the student's dissertation research, familiarity with relevant scientific literature, and general scientific background. The examination can be as comprehensive as the committee desires. The dissertation research is expected to be an original and valuable contribution to the student's field of research, and the dissertation itself should be suitable for publication.

The student must schedule a dissertation research seminar to be presented immediately before the final examination. The student is also responsible for scheduling their final examination. This is a multi-step process and the student is urged to look carefully at the Registrar’s current academic calendar (http://www.uky.edu/registrar/registrar-academic-calendar). Students must first file an application for a degree with the Graduate School by thirty days after the beginning of the graduating semester, or fifteen days in the summer session. Second, students must also file a Notification of
Intent to Schedule a Final Examination at least eight weeks prior to when the examination will occur. The final examination must occur at least eight days prior to the last day of classes in the semester or summer session. Finally, the student must request the Graduate School's approval of the examination date through the online Request for Final Doctoral Dissertation form at least two weeks beforehand. All three of these online forms are available at:

Students have 60 days after their final examination to submit the final copy of the dissertation and a completed Electronic Thesis and Dissertation Form (http://www.research.uky.edu/gs/Forms/ETDApprovalForm.pdf) to the Graduate School.

J. Additional Responsibilities

Seminars
The program considers research seminars to be an essential feature of graduate education. Students are expected to attend all official seminars for the Department of Pharmacology and Nutritional Sciences, and should plan their day accordingly. Otherwise, students should notify the Director of Graduate Studies by e-mail if they were unable to attend. Students are also expected to register for PHA 770, Seminar in Pharmacology, until the semester they take their qualifying exam. Students may be asked to assist seminar speakers in setting up their presentations, or in guiding visitors around campus. Advanced graduate students may be asked to present a seminar, so that the department can be informed of the student's research progress.

Journal Clubs
Pharmacology students meet to discuss a variety of research topics, including papers written by upcoming seminar speakers. The journal club typically meets at least monthly. The graduate student representatives are responsible for informing graduate students about journal club meetings.

Assisting Pharmacology Faculty in Teaching or Grading Exams
Students may be asked to proctor exams in Pharmacology or Nutritional Science courses in either the Fall or Spring semesters. Proctoring assignments are very important to the department, and should only be missed for emergencies. During the course of the year, the graduate student representative may be asked to assign students other duties as the need arises. An effort will be made to distribute duties fairly among graduate students.

Integrated Biomedical Sciences Program
Students are expected to assist the department in introducing new students to the IBS program. This may include attending lunches and question/answer sessions, or giving tours or demonstrations.
IV. M.D./Ph.D. Students

A. Transition from M.D. Training to Ph.D. Training

This usually takes place following the second year of medical school, after selecting a graduate program and major advisor. In order to make the transition as smooth as possible, students should be aware of the following points.

- Formal leave from medical school should be obtained from the Division of Student Affairs.
- Students must be admitted to the Graduate School. See www.research.uky.edu/gs/ProspectiveStudents/Admission.html. Students should apply early, in order to allow time for receipt of transcripts, etc. Check with your advisor and the DGS about whether to apply for summer or fall admission.
- Have your major advisor contact Deborah Turner before May to set up employment as a research assistant.
- Health insurance coverage usually begins in August.

B. The Modified Graduate Curriculum

Entering M.D./Ph.D. students are regarded as second-year graduate students. They are expected to follow the second-year curriculum (page 3), but are excused from taking PHA 622. A typical timeline for the M.D./Ph.D. curriculum is as follows.

Fall, 1st year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHA 621 PRINCIPLES OF DRUG ACTION</td>
<td>3 hours</td>
<td>Dr. Swanson/Piascik</td>
</tr>
<tr>
<td>PHA 750 RESEARCH IN PHARMACOLOGY</td>
<td>5 hours</td>
<td>Dr. Hadley</td>
</tr>
<tr>
<td>PHA 770 SEMINAR IN PHARMACOLOGY</td>
<td>1 hour</td>
<td>Dr. Hadley</td>
</tr>
<tr>
<td>TOX 600 ETHICS IN SCIENTIFIC RESEARCH</td>
<td>1 hour</td>
<td>Dr. Mellon</td>
</tr>
</tbody>
</table>

Spring, 1st year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 580 BIOSTATISTICS I</td>
<td>3 hours</td>
<td>Dr. Kryscio</td>
</tr>
<tr>
<td>PHA 750 RESEARCH IN PHARMACOLOGY</td>
<td>5 hours</td>
<td>Dr. Hadley</td>
</tr>
<tr>
<td>PHA 770 SEMINAR IN PHARMACOLOGY</td>
<td>1 hour</td>
<td>Dr. Hadley</td>
</tr>
<tr>
<td>TOX 600 ETHICS IN SCIENTIFIC RESEARCH</td>
<td>1 hour</td>
<td>Dr. Mellon</td>
</tr>
</tbody>
</table>

Fall, 2nd year (and following terms)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHA 767 DISSERTATION RESEARCH*</td>
<td>2 hours</td>
<td>Dr. Hadley</td>
</tr>
</tbody>
</table>

* PHA 767 should be taken fall and spring semesters, beginning with the term the qualifying exam is taken (usually Fall, 2nd year).
V. General Information

A. Financial Topics

Stipends

Graduate students in good standing receive a competitive stipend jointly set by the departments participating in the IBS program. Note that the University treats the stipends as wages paid to part-time employees, and thus they are tax-liable. The stipends may be derived from a variety of sources, including departmental funds, research grants, scholarships or fellowships, and training grants.

In return for the stipend, students are expected to follow the course of study, conduct research, assist in teaching, and assist the department in other assorted duties. Some funding sources (e.g. training grants) may have additional requirements. Graduate school is regarded as a full-time endeavor, so the department discourages outside employment.

Tuition

Students awarded a research assistantship or fellowship receive payment of tuition, both in-state and out-of-state. Students should be aware that tuition fees paid for the student may be viewed as taxable income by federal and state governments.

Students are guaranteed payment of tuition related to their doctoral programs subject to the following conditions. (1) The coursework for which the student has registered has been approved by the IBS director during the IBS year, and by the chair of their advisory committee and the DGS of their program, once they have entered a doctoral program. (2) The student is in good academic standing. Students who have been notified by the Graduate School that they are officially on scholastic probation will be responsible for payment of in-state tuition charges while they remain on probation. During this time, out-of-state tuition will be paid by the PI/program for out-of-state students. Once they have raised their GPA to the required 3.0 to regain good academic standing, payment of any future tuition charges will be covered by their PI and/or program, subject to condition #1.

Student Health Insurance

The Graduate School provides student health insurance, and pays a fee allowing access to the Student Health Center for minor illnesses. Health insurance for dependents is offered through the University. Insurance coverage usually begins in August. Further information is available at the Graduate School homepage (http://www.research.uky.edu/gs/StudentFunding/health_insurance.html). Additional information can be obtained by calling the Graduate School at 257-6608, or by e-mailing the health insurance coordinator at GSFH@uky.edu.

B. Vacations and Holidays

New students should be aware that graduate school differs from undergraduate study in that graduate work is a full-time endeavor throughout the 12 months of the year. In general, students are expected to be in lab during the workweek when not in class or studying. The department has no specific guidelines governing holidays and vacations, so the research advisor should be consulted before planning time off. Students should also be aware that time-sensitive scientific research can often require work on holidays, weekends, and nights.
C. Personal and Lab Safety

Students should always consult with a faculty member before using new equipment, toxins, chemicals or infectious agents. Students should also be aware that the University requires specific safety training before using various methods and equipment. The following is a partial list of University web pages where you can register for specific training classes or review appropriate safety manuals.

- Chemical Hygiene and Lab Safety: http://ehs.uky.edu/classes/classes_ohs_0001.php#chemical_hygiene.
- Lab Animals: http://www.research.uky.edu/ori/univet/training/Web-Based_Training.htm
- Radiation Safety: http://ehs.uky.edu/classes/classes_radiation_0001.php
- Additional training classes: http://ehs.uky.edu/classes/. These include Autoclaves, Biological Safety, Biological Safety Cabinets, Chemical Fume Hood, Laser Safety and several others.

D. Disciplinary Issues

Reasons for dismissing a student from the Pharmacology graduate program include the following.

- Failure to make adequate progress towards a doctoral degree, as judged by the student’s advisory committee.
- Failure to pass the qualifying exam.
- Plagiarism on class assignments or exams, or else on the qualifying exam or dissertation.
- Academic cheating, falsification of research data, or misuse of University equipment or grant funds.
- Violation of the Code of Student Conduct (http://www.uky.edu/StudentAffairs/Code/part1.html).
- Scholastic probation. When students have completed 12 or more semester hours of graduate course work with a cumulative GPA of less than 3.0, they will be placed on scholastic probation. Students will have one full-time semester or the equivalent (nine hours) to remove the scholastic probation by attaining a 3.0 cumulative GPA. If probation is not removed, students will be dismissed from the Graduate School.

It is by mutual consent that a graduate student carries out dissertation research in the major professor’s laboratory. The dissertation research can be terminated if desired by either the advisor or student. If requested, the program and department will make a good-faith effort to place the student with another research advisor, but cannot guarantee this.
E. Miscellaneous

Keys
Requests for lab or equipment room keys must be approved by your research advisor and departmental chair. Key forms are obtained from the departmental administrator.

Photocopier Privileges
Students may use the departmental photocopier for either research or academic use, but not personal use. An access code may be obtained from the departmental administrator.

Mailbox
Students have mailboxes in Room MS-323B. Check for announcements regularly.
APPENDIX A
Pharmacology Graduate Program
Program Assessment (revised 2011)

Mission Statement

The mission of the graduate program is to provide students with a strong foundation of knowledge in pharmacology, and well as training and experience in scientific discovery, to prepare them for productive careers in research, education, and public service.

Learning Outcomes
1. Be able to demonstrate mastery of the discipline of pharmacology.
2. Be able to critically analyze scientific presentations and articles.
3. Be able to collect scientifically sound experimental data and interpret it correctly.
4. Be able to formulate an innovative hypothesis and design a rational experimental strategy to test it.
5. Be able to give an oral presentation and lead a discussion of research findings to an audience of scientific peers.

Assessment Responsibilities

Students will be assessed for learning outcomes by faculty on either the Pharmacology Graduate Committee, or on students’ individual Advisory Committees. Reports will be sent to the Director of Graduate Studies for analysis. The Director of Graduate Studies, along with the Pharmacology Graduate Committee, will use the statistics for program review as outlined below. Recommendations will be formulated based on the program review and taken to the full faculty for discussion and implementation.

Assessment Methods and Procedures

Program assessment will include both indirect and direct measures of learning.

A. Indirect evidence of learning
 1. Statistics on grades earned in the PHA core courses of PHA 621, PHA 622, and STA 580 will be evaluated every 2 years. This is an indirect measure of learning outcomes 1-4.
 2. The number of manuscripts accepted in peer-reviewed journals for each incoming class will be evaluated every 2 years. This is an indirect measure of learning outcomes 3 and 4.
 3. The number of presentations at local, regional, national, and international conferences will be evaluated for each class every 2 years. This is an indirect measure of learning outcomes 3-5.
 4. Student graduation rates and time to graduation will be evaluated every 2 years. This is an indirect measure of learning outcome 1, 3 and 4.
B. Direct evidence of learning

1. Baseline information will be acquired from 1st year students using the Integrated Biomedical Sciences laboratory rotation evaluations. These data will be tabulated for each 1st year student and statistically analyzed for the entire first year class. At matriculation to specific graduate programs, data for the entire first year class will be broken down by program and will be forwarded to each program. Specifically, this baseline information will cover learning outcomes 2-4.

2. Students will give annual oral research presentations, starting in their third year. The program’s five member Graduate Committee, including the Director of Graduate Studies, will assess their performance during both the presentation and the following discussion, following a rubric scoring guide. This information will cover learning outcome 5.

3. Individual student Advisory Committees, including the dissertation advisor, will provide an annual evaluation of each student. Included in these evaluations is a rubric to provide measures of learning outcomes 3 and 4. Scores will be averaged for students during each of their years in the program and assessed for progress from the 2nd year until graduation.

4. Advisory Committees will evaluate students for learning outcomes 1-4 during the qualifying exam and again at the final dissertation exam. The same rubric used in the annual evaluations will be used for outcomes 3 and 4, with an additional rubric covering learning outcomes 1 and 2.

Assessment Cycles

We will accumulate data for two incoming classes prior to program evaluation by the DGS and Graduate Committee. Moreover, we will examine trends over multiple cycles once we have sufficient data for comparison. Data for the indirect measures of learning outcome can be gathered for preceding years. Direct measurements of learning have been implemented in this academic year, so evaluation will occur once two years of data have been gathered.
Curricular Map

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>PHA 621 Principles of Drug Action</th>
<th>PHA 622 Molecular Drug Targets</th>
<th>STA 580 Biostatistics</th>
<th>PHA 750 Research in Pharmacology</th>
<th>PHA 767 Dissertation Research</th>
<th>PHA 770 Pharmacology Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Mastery of Pharmacology</td>
<td>IER</td>
<td>IER</td>
<td></td>
<td>I</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2) Critical Analysis</td>
<td>IE</td>
<td>IE</td>
<td></td>
<td>IE</td>
<td>RA</td>
<td>RA</td>
</tr>
<tr>
<td>3) Data Collection & Interpretation</td>
<td></td>
<td>IE</td>
<td></td>
<td>IE</td>
<td>RA</td>
<td>RA</td>
</tr>
<tr>
<td>4) Hypothesis & Experimental Design</td>
<td></td>
<td>IE</td>
<td></td>
<td>IE</td>
<td>RA</td>
<td>RA</td>
</tr>
<tr>
<td>5) Oral Presentation & Discussion</td>
<td></td>
<td>IE</td>
<td></td>
<td>IE</td>
<td>RA</td>
<td>IER A</td>
</tr>
</tbody>
</table>

I = Outcome Introduced
E = Outcome Emphasized
R = Outcome Reinforced
A = Outcome Assessed/Applied
Artifact Map

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>IBS Evaluations</th>
<th>Advisory Committee Evaluations</th>
<th>Student Seminar Evaluations</th>
<th>Qualifying Exam Evaluations</th>
<th>Dissertation Defense Evaluations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Mastery of Pharmacology</td>
<td></td>
<td></td>
<td></td>
<td>Start of 3<sup>rd</sup> year</td>
<td>End of dissertation research</td>
</tr>
<tr>
<td>2) Critical Analysis</td>
<td>First year</td>
<td></td>
<td></td>
<td>Start of 3<sup>rd</sup> year</td>
<td>End of dissertation research</td>
</tr>
<tr>
<td>3) Data Collection & Interpretation</td>
<td>First year</td>
<td>Annual, beginning in 2<sup>nd</sup> year</td>
<td></td>
<td>Start of 3<sup>rd</sup> year</td>
<td>End of dissertation research</td>
</tr>
<tr>
<td>4) Hypothesis & Experimental Design</td>
<td>First year</td>
<td>Annual, beginning in 2<sup>nd</sup> year</td>
<td></td>
<td>Start of 3<sup>rd</sup> year</td>
<td>End of dissertation research</td>
</tr>
<tr>
<td>5) Oral Presentation & Discussion</td>
<td></td>
<td></td>
<td>Annual, beginning in 3<sup>rd</sup> year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STUDENT SEMINAR EVALUATION

Student Speaker: __

Date: ________________________

Faculty Evaluator: __

<table>
<thead>
<tr>
<th>Presentation Criteria</th>
<th>Attributes of an Experienced Speaker</th>
<th>Attributes of an Inexperienced Speaker</th>
</tr>
</thead>
</table>
| Be able to prepare an effective visual scientific presentation. | ☐ Number of slides was appropriate for the time allotted.
☐ Slide text and figures were legible and visible to the audience.
☐ Slides proofed for errors.
☐ Captions made clear the purpose and conclusions of slides. | ☐ Too many slides causing a rushed presentation.
☐ Too few slides causing an incomplete presentation.
☐ Slides were dark, had small or crowded elements, or frequently had typos.
☐ Slides were not easily comprehensible without extensive explanation. |
| Be able to prepare a well-organized and effective oral presentation. | ☐ A clear hypothesis/rationale was presented.
☐ Amount of background material was appropriate to appreciate the significance of the research.
☐ Conclusions and limitations of the study were clear, and well-justified. | ☐ A hypothesis and rationale was absent, or was not directly addressed by the study.
☐ Background material was insufficient, or so extensive that it affected the presentation of results.
☐ Conclusions were absent or not justified by results. |
| Be able to present a lucid and engaging scientific talk about a research project. | ☐ Spoke clearly and audibly, engaging the audience.
☐ Presentation was well-practiced.
☐ Complex ideas and terms were adequately explained. | ☐ Presentation was difficult to hear, was rushed or slow-paced, or presented in a monotone.
☐ Speaker faced the presentation more than the audience, or mostly read directly from slides or notes.
☐ Complex ideas and terms were unexplained or confusing. |
| Be able to carry out a high-quality scientific discussion on a research project. | ☐ Speaker understood questions, or asked for clarification.
☐ Speaker provided audible, clear, relevant answers to questions.
☐ Speaker demonstrated extensive knowledge about the research area. | ☐ Speaker misunderstood audience questions.
☐ Answers were inaudible.
☐ Answers did not directly or correctly address audience questions.
☐ Speaker was not familiar enough with the research area. |

Specific Comments/Suggestions:
ANNUAL ADVISORY COMMITTEE STUDENT EVALUATION

Student: ______________________ **Faculty Evaluator:** __ **Date:** ______________________

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Criteria and Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be able to collect scientifically sound experimental data and interpret it correctly.</td>
<td></td>
</tr>
<tr>
<td>1) Demonstrates expertise in relevant laboratory methods and techniques.</td>
<td>□ Fully independent □ Mostly independent □ Requires guidance □ Lab skills under development</td>
</tr>
<tr>
<td>2) Applies appropriate statistical analysis to data.</td>
<td>□ Thorough analysis □ Analysis needs to be expanded □ Analysis inappropriate or in error</td>
</tr>
<tr>
<td>3) Demonstrates awareness of limitations of experimental approaches.</td>
<td>□ Thorough discussion □ Discussion needs to be expanded □ Discussion fairly limited</td>
</tr>
<tr>
<td>4) Conclusions justified by data</td>
<td>□ All are well-justified □ Most are well-justified □ Some are speculative □ Many are speculative</td>
</tr>
</tbody>
</table>

Be able to formulate an innovative hypothesis and design a rational experimental strategy to test it.	
1) Hypothesis is novel, and its evaluation will make a valuable scientific contribution.	□ Hypothesis is novel and important. □ Hypothesis is novel, but importance should be better explained. □ Hypothesis is largely confirmatory of prior work. □ Hypothesis unstated or under development.
2) Experimental design is achievable and will provide a thorough test of the hypothesis.	□ Well-thought out design □ Design needs minor revisions □ Design needs moderate revisions □ Design will not successfully test the hypothesis, or under development
3) Limitations of the experimental design and alternative approaches were considered.	□ Thorough discussion □ Discussion needs to be expanded □ Discussion fairly limited □ Not discussed
4) Student has made a major independent contribution to the experimental design.	□ Student demonstrates substantial initiative □ Experimental design is collaborative effort □ Limited involvement in experimental design □ Student not yet actively engaged in experimental design

Specific Comments/Suggestions:
QUALIFYING EXAM/DISSERTATION DEFENSE EVALUATION (Page 1 of 2)

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Criteria and Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be able to collect scientifically sound experimental data and interpret it correctly.</td>
<td>1) Demonstrates expertise in relevant laboratory methods and techniques.
☐ Fully independent
☐ Mostly independent
☐ Requires guidance
☐ Lab skills under development</td>
</tr>
<tr>
<td>2) Applies appropriate statistical analysis to data.
☐ Thorough analysis
☐ Analysis needs to be expanded
☐ Analysis inappropriate or in error
☐ Analysis largely absent</td>
<td></td>
</tr>
<tr>
<td>3) Demonstrates awareness of limitations of experimental approaches.
☐ Thorough discussion
☐ Discussion needs to be expanded
☐ Discussion fairly limited
☐ Not discussed</td>
<td></td>
</tr>
<tr>
<td>4) Conclusions justified by data
☐ All are well-justified
☐ Most are well-justified
☐ Some are speculative
☐ Many are speculative</td>
<td></td>
</tr>
</tbody>
</table>

| Be able to formulate an innovative hypothesis and design a rational experimental strategy to test it. | 1) **Hypothesis is novel, and its evaluation will make a valuable scientific contribution.**
☐ Hypothesis is novel and important.
☐ Hypothesis is novel, but importance should be better explained.
☐ Hypothesis is largely confirmatory of prior work.
☐ Hypothesis unstated or under development. |
| 2) **Experimental design is achievable and will provide a thorough test of the hypothesis.**
☐ Well-thought out design
☐ Design needs minor revisions
☐ Design needs moderate revisions
☐ Design will not successfully test the hypothesis, or under development |
| 3) **Limitations of the experimental design and alternative approaches were considered.**
☐ Thorough discussion
☐ Discussion needs to be expanded
☐ Discussion fairly limited
☐ Not discussed |
| 4) **Student has made a major independent contribution to the experimental design.**
☐ Student demonstrates substantial initiative
☐ Experimental design is collaborative effort
☐ Limited involvement in experimental design
☐ Student not yet actively engaged in experimental design |

Specific Comments/Suggestions:
QUALIFYING EXAM/DISSERTATION DEFENSE EVALUATION (Page 2 of 2)

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Criteria & Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be able to critically analyze scientific presentations and publications.</td>
<td>1) Demonstrate familiarity and a thorough understanding of the relevant scientific literature.</td>
</tr>
<tr>
<td>1) Demonstrates expertise</td>
<td>☐ Satisfactory level of knowledge</td>
</tr>
<tr>
<td>2) Be able to identify controversies or knowledge gaps in the literature, and use them to develop hypotheses and experimental design.</td>
<td>☐ Experimental design well-integrated with literature discussion and experimental design</td>
</tr>
<tr>
<td>3) Be able to identify weaknesses and limitations of relevant scientific publications.</td>
<td>☐ Thorough analysis and discussion of literature</td>
</tr>
<tr>
<td>Be able to demonstrate mastery of the discipline of pharmacology.</td>
<td>1) Be able to apply key pharmacological principles (e.g. drug-receptor interactions, agonists/antagonists, dose-response, pharmacokinetics, drug transport, metabolism, or excretion) to applicable aspects of experimental design, data analysis, or literature discussion.</td>
</tr>
<tr>
<td>☐ Thorough understanding</td>
<td>☐ Satisfactory understanding</td>
</tr>
</tbody>
</table>

Specific Comments/Suggestions:

APPENDIX B
PHARMACOLOGY GRADUATE FACULTY

Blalock, Eric (Full Member)
Cassis, Lisa (Full Member)
Chen, Kuey (Associate Member)
Craven, Rolf (Full Member)
Hadley, Robert (Full Member)
Head, Elizabeth (Full Member)
Huang, Cai (Full Member)
Jo, Misung (Associate Member)
Kilgore, Michael (Full Member)
Landfield, Philip (Full Member)
Littleton, John (Full Member)
Morris, Andrew (Full Member)
Norris, Christopher (Full Member)
Pavlik, Edward (Full Member)
Piascik, Michael (Full Member)
Plattner, Rina (Full Member)
Porter, Nada (Full Member)
She, Qing-Bai (Associate Member)
Slevin, John (Full Member)
Smyth, Susan (Full Member)
Swanson, Hollie (Full Member)
Thibault, Olivier (Full Member)
Xu, Ren (Associate Member)
Yang, Xiuwei (Associate Member)